Клубове Дир.бг
powered by diri.bg
търси в Клубове diri.bg Разширено търсене

Вход
Име
Парола

Клубове
Dir.bg
Взаимопомощ
Горещи теми
Компютри и Интернет
Контакти
Култура и изкуство
Мнения
Наука
Политика, Свят
Спорт
Техника
Градове
Религия и мистика
Фен клубове
Хоби, Развлечения
Общества
Я, архивите са живи
Клубове Дирене Регистрация Кой е тук Въпроси Списък Купувам / Продавам 21:12 29.09.24 
Природни науки
   >> Биология
Всички теми Следваща тема *Кратък преглед

Страници по тази тема: 1 | 2 | >> (покажи всички)
Тема Aminokiselini????Kolkoнови  
Авторexbiolog (Нерегистриран)
Публикувано25.11.03 19:50



Sdraveite pochitateli na biologiata,
Dnes se ispravih pred mnogo stranen problem i ne mi dava mira do sega. Savarshila sam predi dosta godini biologia, no ne viarvam da sam isgubila do takava stepen snaniata si, che da ne pomnia kolko sa aminokiselinite. I taka dokolkoto si spomniam te sa si 20. Dnes moia koleshka mi kasa, che v uchebnika na sina i pishelo, che proteinite sa isgradeni ot 22 aminokiselini( shiveia v chushbina i tuk obrasovanieto nikak ne e na nivo). Snam, che e tap vapros, no toku shto ia nakarah da mi go prochete i ... niama shega taka e napisano... Molia nastoiashti studfdenti da rasseeete samneniata mi otnosno tosi ?



Тема Re: Aminokiselini????Kolkoнови [re: exbiolog]  
Авторexbiolog (Нерегистриран)
Публикувано25.11.03 22:32



Niama nushda da mi otgovariate. Dosega vliasoh v niakolko saita-angl. i bg i estestveno Ak sa si 20. Prosto tuk i daskali i pisachi na uchebnizi sa palni idioti. Toku shto edna priatelka mi spodeli, che na deteto i v uchilishte kasali, che Antarktida ne e kontinent , sashtoto ne e naselen... E sa parvio pat chuvam takova opredelenie sa kontinent. No comments. Gordeite se, che ste balgari, che v drugi strani zari palen mrak i prostotiia.



Тема Re: Aminokiselini????Kolkoнови [re: exbiolog]  
Автор; (Нерегистриран)
Публикувано26.11.03 10:51



Estestveno che sa poveche ot 20. Broia na aminokiselinite koito sushtestvuvat v prirodata e 22. Aminokiselinite koito ti se gubiat sa Selenocysteine i Pyrrolysine. Oswen tova organizmite mogat da se modificirat taka che da vkliuchvat i sintetichni aminokiselini v beltucite. Ta na koj po-tochno mu kuca obrazovanieto i koj e pulen idiot? Enjoy;)



Тема Re: Aminokiselini????Kolkoнови [re: ;]  
Автор nadiaKF (Nadia)
Публикувано26.11.03 18:17



Amino Acids
Amino acids are the building blocks (monomers) of proteins. 20 different amino acids are used to synthesize proteins. The shape and other properties of each protein is dictated by the precise sequence of amino acids in it.
Each amino acid consists of an alpha carbon atom to which is attached

a hydrogen atom
an amino group (hence "amino" acid)
a carboxyl group (-COOH). This gives up a proton and is thus an acid (hence amino "acid")
one of 20 different "R" groups. It is the structure of the R group that determines which of the 20 it is and its special properties. The amino acid shown here is Alanine.



The Amino Acids
(For each amino acid, both the three-letter and single-letter codes are given. CLICK the NAME to see the structural formula) Alanine Ala A hydrophobic
Arginine Arg R free amino group makes it basic and hydrophilic
Asparagine Asn N carbohydrate can be covalently linked ("N-linked) to its -NH
Aspartic acid Asp D free carboxyl group makes it acidic and hydrophilic
Cysteine Cys C oxidation of their sulfhydryl (-SH) groups link 2 Cys (S-S)
Glutamic acid Glu E free carboxyl group makes it acidic and hydrophilic
Glutamine Gln Q moderately hydrophilic
Glycine Gly G so small it is amphiphilic (can exist in any surroundings)
Histidine His H basic and hydrophilic
Isoleucine Ile I hydrophobic
Leucine Leu L hydrophobic
Lysine Lys K strongly basic and hydrophilic
Methionine Met M hydrophobic
Phenylalanine Phe F very hydrophobic
Proline Pro P causes kinks in the chain
Serine Ser S carbohydrate can be covalently linked ("O-linked") to its -OH
Threonine Thr T carbohydrate can be covalently linked ("O-linked") to its -OH
Tryptophan Trp W scarce in most plant proteins
Tyrosine Tyr Y a phosphate or sulfate group can be covalently attached to its -OH
Valine Val V hydrophobic

Humans must include adequate amounts of 9 amino acids in their diet. These "essential" amino acids cannot be synthesized from other precursors. However, cysteine can partially meet the need for methionine (they both contain sulfur), and tyrosine can partially substitute for phenylalanine.

The Essential Amino Acids Histidine
Isoleucine
Leucine
Lysine
Methionine (and/or cysteine)
Phenylalanine (and/or tyrosine)
Threonine
Tryptophan
Valine

Two of the essential amino acids, lysine and tryptophan, are poorly represented in most plant proteins. Thus strict vegetarians should ensure that their diet contains sufficient amounts of these two amino acids.

PS. Molia ; posochi i ti sait, sa da prochetem i nie po-malko snaeshtite.




Тема Re: Aminokiselini????Kolkoнови [re: nadiaKF]  
АвторNadia (Нерегистриран)
Публикувано26.11.03 18:27



Protein Structure

The primary structure of a segment of a polypeptide chain or of a protein is the amino-acid sequence of the polypeptide chain(s), without regard to spatial arrangement (apart from configuration at the alpha-carbon atom). This definition does not include the positions of disulphide bonds, and is, therefore, not identical with "covalent structure" (IUPAC-IUB, 1970). The commonly occurring amino acids are of 20 different kinds which contain the same dipolar ion group H3N+.CH.COO-. They all have in common a central carbon atom to which are attached a hydrogen atom, an amino group (NH2) and a carboxyl group (COOH). The central carbon atom is called the Calpha-atom and is a chiral centre. All amino acids found in proteins encoded by the genome have the L-configuration at this chiral centre.



This configuration can be remembered as the CORN law. Imagine looking along the H-Calpha bond with the H atom closest to you.



MOLIA niakoi ,koito v momenta sledva biologia da otvori biohimiata i da ni osvetli, che mi stana mnogo interesno. Nikoga dosega ne sam chela nikade sa 22 AK. E niama da gi pasaiat v taina vse pak???



Тема Re: Aminokiselini????Kolkoнови [re: Nadia]  
Автор; (Нерегистриран)
Публикувано26.11.03 22:17



http://www.mast.udel.edu/634/Refs/22nd Amino Acid SCIENCE.pdf
http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Codons.html
http://www.sciencedaily.com/releases/2003/01/030114072450.htm

Expanding the Genetic Code

Lei Wang*

The canonical genetic code includes 64 codons encoding 20 amino acids and three stop signals. It is preserved in three kingdoms of life. The origin of the genetic code, whether a "frozen accident" or an expansion from a primordial code with fewer amino acids, remains an enigma (1, 2). Although proteins carry out most of the complex processes of life, there is clearly a need for additional building blocks: Some functions are dependent on posttranslational modification or cofactors, and many important peptides containing unusual amino acids are synthesized nonribosomally (3). Why only 20, and why were these 20 amino acids in particular chosen for the code? Nature encodes two additional amino acids, selenocysteine (Sec) and pyrrolysine (Pyl), in limited proteins but in a distinctive way: The Sec-tRNASec is converted from a preloaded Ser-tRNASec. Special mRNA elements and elongation factors are also required for Sec incorporation into proteins (4). Pyl is likely incorporated similarly (5). Why does nature not simply employ the standard mechanism of directly loading amino acids onto their cognate tRNA to incorporate Sec and Pyl?


In my graduate research, I explored whether the genetic code can be expanded to accommodate additional amino acids, using a strategy that mimics the way that the common amino acids are encoded. To do this, a novel tRNA-codon pair and an aminoacyl-tRNA synthetase (aaRS) need to be generated that uniquely incorporate an unnatural amino acid. The new components should be orthogonal to the endogenous ones to avoid crosstalk and should function efficiently with the translational apparatus (see the figure) (6).






New building blocks. A general method for genetically encoding unnatural amino acids into proteins.

CREDIT: PRESTON HUEY/SCIENCE


Design of a new codon-tRNA-aaRS set from scratch would be nearly impossible, considering their delicate interactions evolved to ensure translational accuracy. My approach was therefore borrowing and engineering. Escherichia coli was chosen as the host organism, and the amber nonsense codon (UAG) was hijacked to encode an unnatural amino acid. I first generated an orthogonal amber suppressor tRNATyrCUA/TyrRS pair in E. coli by importing a tRNATyr/TyrRS pair from the archaebacterium Methanococcus jannaschii (Mj), after testing various tRNA/aaRS pairs from different organisms (7). To optimize this pair, I thendeveloped a general strategy consisting of negative and positive selections of a mutant suppressor tRNA library (8). Eleven nucleotides of Mj-tRNATyrCUA were randomly mutated, and from the resulting library a mutant (mutRNATyrCUA) was identified that has almost no affinity for E. coli synthetases and is still charged efficiently by the orthogonal Mj-TyrRS with tyrosine. The next step was to alter the amino acid specificity of the Mj-TyrRS so that it aminoacylated the mutRNATyrCUA with an unnatural amino acid only. A combinatorial approach was pursued, in which a pool of mutant synthetases was generated from the framework of the wild-type synthetase and then mutants were selected based on their specificity for an unnatural amino acid relative to the common 20.


Five active-site residues of Mj-TyrRS were randomly mutated to generate the synthetase library. After two rounds of selection, a synthetase was evolved that, when coexpressed with the mutRNATyrCUA, incorporates O-methyl-L-tyrosine into proteins in response to the amber codon with translational fidelity and yield rivaling those of natural amino acids (9). Thus, the genetic code of E. coli was expanded for the first time. I subsequently evolved a second mutant synthetase that is capable of selectively inserting L-3-(2-naphthyl)-alanine, an amino acid structurally distinct from tyrosine, suggesting that this methodology should be generalizable to various unnatural amino acids (10).


These results show that the genetic code can indeed be expanded further using nature's technique--loading amino acid to cognate tRNA via synthetase--although nature did not repeat this method for a 21st amino acid. This expansion may recapitulate how some of the common amino acids were added to the genetic code, suggesting that an incremental expansion was involved in the code's origin. The fact that no toxic side effects were observed in E. coli cells with UAG encoding an unnatural amino acid supports the codon reassignment hypothesis (2). To investigate the evolutionary consequences of adding novel amino acids to the genetic repertoire, a completely autonomous 21-amino acid bacterium was generated, which biosynthesizes p-amino-L-phenylalanine from basic carbon sources and incorporates it in response to the UAG codon (11). Directed evolution of such organisms under selective pressure is under way and may shed light on whether additional amino acids give an evolutionary advantage.


Genetically encoding new amino acids makes it possible to tailor changes in proteins in live cells, and therefore protein structure and function can be studied directly in vivo in addition to in vitro. Using the same method and system, we subsequently encoded more than 13 unnatural amino acids with novel functionalities in E. coli (12). For instance, the versatile keto group was genetically encoded in the form of p-acetyl-L-phenylalanine (13). It served as a unique chemical handle, through which proteins were selectively labeled with fluorophores for imaging, with biotin for detection, and with carbohydrates for generation of homogeneous glycoprotein mimetics (14). Other agents such as spin labels, metal chelators, cross-linking agents, polyethers, fatty acids, and toxins can be attached similarly. Two heavy atom-containing amino acids (p-bromo and p-iodo-L-phenylalanine) were site-specifically incorporated into proteins, providing a reliable method for preparing isomorphous heavy-atom derivatives of proteins for crystallography (12).


The availability of novel building blocks may lead to protein properties that never existed before. In an initial test, Tyr66 of the green fluorescent protein (GFP) was substituted with several tyrosine analogs, resulting in mutant GFPs with emissions ranging from blue to cyan to green, as well as other new spectral properties (15). In vivo unnatural amino acid mutagenesis by rational design or directed protein evolution should greatly expand the scope and power of protein engineering.


In summary, my thesis research demonstrated that the genetic code can be expanded to include new amino acids. The methodology is generalizable to different amino acids as well as cell types (16). It provides a new means for evolutionary study of the genetic code, and powerful tools for molecular and cellular biologists to dissect protein and cellular function both in vitro and in vivo. With additional building blocks genetically encoded, proteins and even organisms with enhanced or novel properties may be evolved.


References


F. H. Crick, J. Mol. Biol. 38, 367 (1968).
R. D. Knight, S. J. Freeland, L. F. Landweber, Nature Rev. Genet. 2, 49 (2001).
C. T. Walsh et al., Curr. Opin. Chem. Biol. 5, 525 (2001).
A. Bock et al., Mol. Microbiol. 5, 515 (1991).
G. Srinivasan, C. M. James, J. A. Krzycki, Science 296, 1459 (2002).
L. Wang, P. G. Schultz, Chem. Commun. 1 (2002).
L. Wang, T. J. Magliery, D. R. Liu, P. G. Schultz, J. Am. Chem. Soc. 122, 5010 (2000).
L. Wang, P. G. Schultz, Chem. Biol. 8, 883 (2001).
L. Wang, A. Brock, B. Herberich, P. G. Schultz, Science 292, 498 (2001).
L. Wang, A. Brock, P. G. Schultz, J. Am. Chem. Soc. 124, 1836 (2002).
R. A. Mehl et al., J. Am. Chem. Soc. 125, 935 (2003).
L. Wang, thesis, University of California at Berkeley (2002).
L. Wang, Z. Zhang, A. Brock, P. G. Schultz, Proc. Natl. Acad. Sci. U.S.A. 100, 56 (2003).
H. Liu, L. Wang, A. Brock, C. H. Wong, P. G. Schultz, J. Am. Chem. Soc. 125, 1702 (2003).
L. Wang, J. Xie, A. A. Deniz, P. G. Schultz, J. Org. Chem. 68, 174 (2003).
K. Sakamoto et al., Nucleic Acids Res. 30, 4692 (2002).



Тема Re: Aminokiselini????Kolkoнови [re: Nadia]  
Автор !чepeшka (master)
Публикувано15.12.03 23:56



добре, де, а аз защо знам, че освен двайсетте, изграждащи белтъците, има още много "свободни", които нямат такива ангажименти?!Както и да е, в момента не мога да проверя какво пише в учебника по биохимия, но щом що направя, ще го напиша.
:))

Ако те обичам, нима това те интересува?


Тема Re: Aminokiselini????Kolkoнови [re: !чepeшka]  
Автор Slade (...)
Публикувано16.12.03 01:45



Има много производни аминокиселини с различна функция. Еми ей ти го най-простия пример - таурин (регулатор на нервната система); селеноцистеин (някаква функция имаше при транслацията, но съм забравил); орнитин и куп други. Тъй че аминокиселини с колкото щеш функции в организма и не участват в белтъци.

The ones who live by the sword get shot by the ones who don't


Тема Re: Aminokiselini????Kolkoнови [re: Slade]  
Авторtz* (Нерегистриран)
Публикувано23.12.03 14:56



ako nqkoi vse o6te se interesuva ot to4niq otgovor na zagadkata:

Izvestno e 4e azbukata na nukleotidite e 4etiribukvena-za PNK tova sa bazite A,U,G i TZ(tzutozin)(za DNK-A,T.G i TZ).Kodut e trizna4en toest kombinaziqta ot tri nukleotida kodira edna aminokiselina,sledovatelno vuzmojnite kombinazii za 4etirte bazi sa 4 na stepen 3=64.AMINOKISELINITE V BELTUZITE SA 20 NA BROI,mnogo po malko otkolkoto sa vuzmojnite kodoni.Nali4ieto na pove4e ot neobhodimite za 20-aminokiselini kodoni pokazva 4e v ezika na nukleotidite,kakto vuv vseki ezik ima sinonimi.Osven tova kogato se pi6e izre4enie to ima na4alo i krai-glavna bukva i to4ka.Rolqta na takiva znazi izpulnqvat nqkoi ot kodonite.

tazi informaziq e vzeta ot kandidat studentski u4ebnik.taka pi6at az ne znam..



Тема Re: Aminokiselini????Kolkoнови [re: tz*]  
Автор Slade (...)
Публикувано31.12.03 05:17



Благодаря ти искрено, че ми преписа част от учебника за 9-ти клас, но се опасявам, че всички това го знаят.

The ones who live by the sword get shot by the ones who don't



Страници по тази тема: 1 | 2 | >> (покажи всички)
Всички темиСледваща тема*Кратък преглед
Клуб :  


Clubs.dir.bg е форум за дискусии. Dir.bg не носи отговорност за съдържанието и достоверността на публикуваните в дискусиите материали.

Никаква част от съдържанието на тази страница не може да бъде репродуцирана, записвана или предавана под каквато и да е форма или по какъвто и да е повод без писменото съгласие на Dir.bg
За Забележки, коментари и предложения ползвайте формата за Обратна връзка | Мобилна версия | Потребителско споразумение
© 2006-2024 Dir.bg Всички права запазени.